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A. Żak a,�, M. Krawczuk a,b

a Institute of Fluid-flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk, Poland
b Gdansk University of Technology, Faculty of Electrical and Control Engineering, Narutowicza 11/12, 80-952 Gdansk, Poland
a r t i c l e i n f o

Article history:

Received 21 August 2009

Received in revised form

1 December 2009

Accepted 11 December 2009
Handling Editor: M.P. Cartmell
Love and Mindlin–Herrmann approaches as well as new two, three and four-mode
Available online 8 January 2010
0X/$ - see front matter & 2009 Elsevier Ltd. A

016/j.jsv.2009.12.019

responding author.

ail addresses: a.zak@imp.gda.pl, azak@imp.gd
a b s t r a c t

In this work different theories of rods have been discussed and compared. The

investigated theories are widely used in spectral finite element modelling of rod

behaviour associated with propagation of symmetric longitudinal waves. These are

various single, two-mode and three-mode theories including the elementary, classical

theories proposed by the authors. Dispersion curves associated with each theory,

obtained by the use of Hamilton’s principle, have been presented and discussed in the

paper. The investigation programme carried out by the authors aimed to show major

differences and similarities between the rod theories and to discuss certain numerical

aspects of their application. Great attention has been paid on properties, limitations as

well as difficulties associated with the use of the theories. The results obtained from a

wide program on numerical tests allowed the authors to draw certain general

conclusions that are valid not only in the field of the spectral finite element method

but also in the field of dynamics of engineering rod structures.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The phenomenon of elastic wave propagation in structural elements has been extensively studied by many researchers
for last few decades. The biggest issue in accurate numerical modelling of wave propagation is structural elements comes
from high frequency excitations. Such excitation regimes imply high velocities of propagating signals. Their precise
representation in space and time requires very dense spacial and time discretisation making the discretisation process a
key factor of any wave propagation analysis. Because of that fact many different numerical methods of modelling the wave
propagation phenomenon have been reported in the literature.

Numerical methods that are currently in use to study propagation of elastic waves in structural elements can be divided
into frequency domain (FD) and time domain (TD) methods. The first group of the methods covers various spectral
techniques based on the frequency representation of excitation and propagating signals and is very well established in the
literature. The application of the direct and inverse fast Fourier transforms (FFT, IFFT) for signal transformations between
the time and frequency domains is an essential feature of these techniques.

Gopalakrishnan et al. [1] presented a methodology for development of an exact spectral Timoshenko beam element
to study wave propagation in beam structures. Rizzi and Doyle [2] used a similar spectral approach to study in-plane
stress waves propagating in infinite and semi-infinite planes. Danial et al. [3] investigated propagation of in-plane and
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out-of-plane responses in a plate with stringers as well as in a thin-walled box beam, while Martin and Doyle [4] in their
work described a method for determination of the location of an impact force using dynamic response measurements. In
his work [5] Doyle presented a unified approach for various wave propagation problems in one-dimensional and two-
dimensional structural elements by the use of the FFT-based spectral finite element method (SFEM). Propagation of
flexural waves in a cracked isotropic plate [6] and flexural–shear coupled waves in a laminated composite beam with a
crack [7] was investigated by Krawczuk et al., who employed the same methodology to solve wave propagation problems
as presented by Doyle. Applying the same technique of the FFT-based spectral finite elements Mahapatra and
Gopalakrishnan [8] studied propagation of axial–flexural–shear waves in thick laminated composite beams due to impact
loading.

Oshima et al. [9] showed that the strip element method (SEM) formulated in the frequency domain can be applied for
propagation of stress elastic waves in a beam composite fibre sensor. Similarly Liu et al. [10] investigated scattering of
elastic waves by rectangular flaws in anisotropic laminated plates, while Xi et al. [11] used the same strip element
technique in the frequency domain for investigation of coupled fluid–structure interaction and its influence on propagation
and scattering of elastic waves in the case of a fluid-filled laminated composite cylindrical shell.

In the case of the time domain methods many different solution techniques are still in use in order to study propagation
of elastic waves and are reported in the literature. The techniques that can be mentioned here include the mass spring
lattice model (MSLM) and the local interaction simulation approach (LISA), the finite difference method (FDM), the method
of finite elements (FEM) and boundary elements (BEM) as well as the time domain spectral finite element method (SFEM).

Simulation of ultrasonic waves in isotropic and transversely isotropic media by the use of the mass spring lattice model
was carried out by Yim and Choi [12], while Chen et al. [13] studied propagation of surface acoustic waves in aluminium
and copper plates excited by a laser pulse. Baek and Yim [14] employed the same technique for various wave phenomena
in transversely isotropic media. Delsanto et al. [15] used the local interaction simulation approach for investigation of one-
dimensional uniform waveforms propagating through a plate and in [16] presented the use of the same method in the case
of two-dimensional waveforms. In a similar way Sundararaman and Adams [17] applying the local interaction simulation
approach studied propagation of Lamb waves in aluminium and orthotropic plates and interactions of waves with different
types of damage.

A new finite difference scheme for modelling of propagation of longitudinal and transverse waves in a heterogeneous
media presented Virieux [18,19]. Various aspects associated with the stability, dissipation and convergence of different
order finite difference schemes used for solving partial differential equations discussed in his work Strickwerda [20]. Harari
and Turkel [21] developed fourth-order accurate finite difference methods for solving problems of propagation of harmonic
acoustic waves. A review of higher order and optimised finite difference schemes used for numerical simulations of the
propagation and scattering of elastic, electromagnetic and acoustic waves was given by Zingg [22]. Gosselin et al. [23] used
the finite element and finite difference methods in order to solve the elastic and acoustic wave equations. Their results
show that the finite element method is more efficient than the method of finite differences for the models with widely
varying Poisson’s ratio.

Investigation on laser induced transient Lamb waves propagating in thin plate-like and shell-like structures was carried
out by Verdict et al. [24], who used the finite element method for that purpose. Koshiba et al. [25] presented a finite
element based solution for scattering of the fundamental symmetric Lamb wave by a wedge-shaped internal and surface
cracks in an elastic plate wave guide. A study on the effectiveness of the finite element method for modelling propagation
of guided waves in annular structures was done by Moser et al. [26]. Yokoyama [27] employed the method of finite
elements for investigation of one-dimensional torsional plastic waves in a thin-walled tube. Also the finite element
technique was applied by Conry et al. [28], who analysed reflection and transmission of Lamb waves by embedded and
surface-breaking defects in thin isotropic plates. Jeong and Ruzzene [29] studied vibration and wave propagation of
cylindrical periodic grid structures by the use of the finite element method.

Zhu et al. [30] presented in their work a general boundary element approach for elastic wave propagation and scattering by
cracks in laminated composite plates. A hybrid boundary element approach was employed by Clio [31] in order to investigate
scattering of Lamb waves by various plate defects as well as to study the phenomena of mode conversion due to step
discontinuities. Hayashi and Endoh [32] applied the same hybrid boundary element method for simulation of propagation of
Lamb waves in plates. A study on the use of ultrasonic subsurface longitudinal waves for inspection of surface cracks resulting
from rolling contact was performed by Lu et al. [33] who also employed the boundary element method.

The use of the spectral finite element method for various wave propagation problems starts from the work by Patera
[34] who proposed a specific spectral approach based on the use of higher order Chebyshev or orthogonal Legendre
polynomials combined with discretisation typical for the finite element method. Dauksher and Emery [35] analysed
dispersion and accuracy of Chebyshev spectral finite element solutions in the case of one-dimensional and two-
dimensional wave equations. The spectral finite element method was also employed by Komatitsch et al. [36] for
investigation of elastic wave propagation in realistic geological structures in two-dimensional and three-dimensional
geometries. Propagation of elastic in-plane waves in isotropic panels with damage in the form of fatigue cracks was studied
by Żak et al. [37], while Ostachowicz et al. [38] demonstrated the effectiveness of the spectral finite element method for
damage detection in various one-dimensional and two-dimensional structural elements. The same spectral approach was
used by Kudela and Ostachowicz [39] who investigated the influence of various material parameters on propagation of
transverse elastic waves corresponding to the fundamental mode of Lamb waves in a laminated composite plate.
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Various one or multimode rod theories have been applied for problems related with propagation of elastic waves in rod
structural elements. It should be noted that in the available literature the use of both frequency domain (FD) and time
domain (TD) methods mentioned above seems to be equally reported. For example, Baz in [40], Palacz and Krawczuk in
[41], Krawczuk et al. in [7] as well as Anderson in [42] applied the FFT-based spectral finite element method for their
research, while at the same time Bodner and Aboudi [43], Seemann [44], Zheng et al. [45] and Kudela et al. [46] obtained
their results by the use of various time domain techniques.

In this work different theories of rods have been discussed and compared. These are various single, two-mode and
three-mode theories including the elementary, classical Love and Mindlin–Herrmann approaches as well as new two, three
and four-mode theories proposed by the authors. Dispersion curves for each theory analysed in the paper have been
presented and discussed and have been obtained by the use of Hamilton’s principle. The investigation programme carried
out by the authors aimed to show major differences and similarities between the rod theories and to discuss certain
numerical aspects of their application. Great attention has been paid on properties, limitations as well as difficulties
associated with the use of the theories. The results obtained from a wide program on numerical tests allowed the authors
to draw certain general conclusions that are valid not only in the field of the spectral finite element method but also in the
field of dynamics of engineering rod structures.
2. Elastic waves in rods

2.1. Theoretical background

Propagation of elastic waves in rod structural elements can be well described by the linear theory of elasticity. In the
case of isotropic materials the equation of motion governing propagation of elastic waves can be expressed in a vector form
as [5,47,48]):

mr2uþðlþ2mÞ grad 0:16emdiv u¼ r €u (1)

where u is a displacement vector, l and m are Lamé material elastic constants, r denotes material density and €& is the
second time derivative.

It is most convenient to analyse this problem using the cylindrical ðx; r; yÞ rather than the Cartesian ðx; y; zÞ
coordinates—see Fig. 1. In the cylindrical coordinate system the components ux, ur and uy of the displacement vector u are
certain scalar functions of the space coordinates x, r and y as well as time t.

According to Helmholtz’s theorem the field of the displacement vector u can be thought of as a sum of two special
vector fields uf and uH such that the vector field uf is irrotational (rot uf ¼ 0), while the vector field uH is solenoidal
(div uH ¼ 0). This is achieved by assuming that the field of the displacement vector u is generated by a pair of potentials, i.e.
scalar potential f and vector potential H¼ ðHx;Hr ;HyÞ:

u¼ ufþuH ¼ gradfþrot H; div H¼ 0 (2)
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Fig. 1. Geometry of a rod structural element.
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with the following notation employed:
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where î, ĵ and ĥ are the unit vectors indicating the orientations of the x-, r- and y�axes.
Application of Helmholtz’s theorem and substitution of Eq. (2) into Eq. (1) leads after some simplification and

rearranging of the terms related to both potentials f and H to

grad ðlþ2mÞr2f�rq
2f
qt2

" #
þrot mr2H�rq

2H

qt2

" #
¼ 0 (3)

which presents in fact a set of two independent equations of motion for both potentials f and H:

r2f¼
1

c2
l

q2f
qt2

; r2H¼
1

c2
t

q2H

qt2
(4)

where cl and ct defined as follows:

c2
l ¼

lþ2m
r

; c2
t ¼

m
r

(5)

denote the velocities of longitudinal (irrotational, voluminal, dilatational or primary) and torsional (rotational,
equi-voluminal, shear or secondary) waves propagating in three-dimensional unbounded isotropic media, respectively.

2.2. Pochhammer frequency equation

Investigation of elastic longitudinal waves propagating in a rod structural element can be greatly simplified by the use
of the assumption about the rotational symmetry of the rod with respect to its longitudinal x axis. Due to this symmetry all
displacement and strain components must be independent of the angle y. In this case the displacement component uy as
well as the strain components gxy and gry must be equal zero, i.e. uy ¼ gxy ¼ gry ¼ 0. Moreover, it can be shown that as a
direct consequence of the symmetry the vector potential H must have only one non-zero component Hy and the other two
components Hx and Hr vanish, i.e. Hx ¼Hr ¼ 0 giving H¼ ð0;0;HyÞ [47,48]). In this way the non-zero components ux and ur

of the displacement vector u within the rod can be expressed in the following way:

ux ¼
qf
qx
þ

1

r

qðrHyÞ

qr
; ur ¼

qf
qr
�
qHy

qx
(6)

which after substitution to Eq. (1) and some simplifications results in another set of two independent equations of motion
expressed in terms of the scalar potentials f and Hy:

r
2f¼

1

c2
l

q2f
qt2

; r2Hy�
Hy

r2
¼

1

c2
t

q2Hy

qt2
(7)

The second equation from this set can be simplified by taking advantage of the fact that

q
qr
r

2f¼r2 qf
qr
�

1

r2

qf
qr

and by the use of the substitution Hy ¼�
qc
qr

that gives:

r
2f¼
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(8)

while the components ux and ur of the displacement vector u can be finally expressed as

ux ¼
qf
qx
�
q2c
qr2
�

1

r

qc
qr
; ur ¼

qf
qr
�

q2c
qxqr

(9)

The strain field within the rod can be easily evaluated based on Eqs. (9) and has the following non-zero components:

exx ¼
qux

qx
; err ¼

qur

qr
; eyy ¼

ur

r
; gxr ¼

qur

qx
þ
qux

qr
(10)



ARTICLE IN PRESS
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while the stress field can be calculated from Hook’s law based on the following very well-known formulas:

sxx ¼ 2mexxþlðexxþerrþeyyÞ

srr ¼ 2merrþlðexxþerrþeyyÞ

syy ¼ 2meyyþlðexxþerrþeyyÞ

txr ¼ mgxr (11)

Harmonic waves that propagate within the rod along its longitudinal x-axis can be assumed as solutions of Eqs. (8) in a
general complex form

f¼ f̂ðrÞeiðkx�otÞ; c¼ ĉðrÞeiðkx�otÞ (12)

where f̂ðrÞ and ĉðrÞ are unknown functions and k denotes the wave number while o is the angular frequency.
Their substitution to the equations of motion (8) leads to a set of Bessel’s differential equations for the functions f̂ðrÞ

and ĉðrÞ:

d2f̂
dr2
þ

1

r

df̂
dr
þa2f̂ ¼ 0;

d2ĉ
dr2
þ

1

r

dĉ
dr
þb2ĉ ¼ 0 (13)

where

a2 ¼
o2

c2
l

�k2; b2
¼
o2

c2
t

�k2

that has solutions in the form of Bessel functions of the first J0ðarÞ and J0ðbrÞ as well as Bessel functions of the second Y0ðarÞ

and Y0ðbrÞ kind. Because the Bessel functions of the second kind exhibit singular behaviour at their origin at r¼ 0 this
branch of the solution is discarded leading to the following form of the solution of the problem under investigation:

f̂ðrÞ ¼ AJ0ðarÞ; ĉðrÞ ¼ BJ0ðbrÞ (14)

where A and B are certain constants.
Taking into account the general form of the solutions from Eqs. (12) it can be finally written that:

f¼ AJ0ðarÞeiðkx�otÞ; c¼ BJ0ðbrÞeiðkx�otÞ (15)

Propagation of elastic longitudinal waves in the rod requires the fulfilment of zero-traction boundary conditions on the rod
outer surface that accompany the set of the equations of motion given by (8):

srrðx; rÞ ¼ txrðx; rÞ ¼ 0 for 0rxr l; r¼ a¼
d

2
(16)

where l is the length and d is the diameter of the rod.
The zero-traction boundary conditions for the stress components srr and txr , after substitution of Eqs. (15) to Eqs. (10)

and by the subsequent use of the formulas from Eqs. (11) and some simplification, form a set of two homogeneous
equations expressed in terms of the two solutions from Eqs. (15).

The given set of equations has a non-trivial solution only then when its determinant vanishes. In the case under
consideration this condition leads directly to a certain nonlinear equation known in the literature as the Pochhammer
frequency equation for longitudinal modes propagating in rods and which links together the angular frequency o and the
wave number k. The Pochhammer frequency equation has the following form:

2a
a
ðb2
þk2ÞJ1ðaaÞJ1ðbaÞ�ðb2

�k2Þ
2J0ðaaÞJ1ðbaÞþ�4k2abJ1ðaaÞJ0ðbaÞ ¼ 0 (17)

It is interesting to note that this equation was originally introduced by a Prussian mathematician Pochhammer [49] in
1876 who studied vibration behaviour of circular cylinders. This equation was also studied by many other researches
[50–54] and due its complexity the roots of the equation remained unknown for many years.

2.3. Solution of the Pochhammer frequency equation

In the current case the Pochhammer frequency equation was solved by the use of an original and dedicated program
written by the authors in Matlab environment [55]. The values of the velocities of longitudinal cl and torsional ct waves
propagating in the rod were calculated assuming the rod made out of aluminium with Young’s modulus E¼ 72:7 GPa,
Poisson’s ratio n¼ 0:33 and material density r¼ 2700 kg=m3 and of the diameter d¼ 0:01 m. The values of the
characteristic velocities were cl ¼ 6:3 km=s and ct ¼ 3:2 km=s, respectively.

As a calculation domain the frequency range f from 0.1 Hz up to 2.0 MHz and the phase velocity range cP from 2 km/s up
to 50 km/s was chosen. The roots of the Pochhammer frequency equation were sought at nodes of a regular grid of
400� 2000 nodes at the assumed accuracy level dr0:001percent.
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The solution was based on the use of a conjugate bisection method developed by the authors [56]. In the first step the
roots were found as a function of the phase velocity cp ¼o=k for given values of the frequency f ¼o=2p treated as a
parameter in Eq. (17). In the second step the phase velocity cp was assumed to be a parameter and the roots were found as
a function of the frequency f. In this way the second step of calculations improved the solutions obtained from the first step
for those regions of analysis where changes in the phase velocity cp as a function of the frequency f were of a very high
magnitude.

The results obtained for changes in the phase velocity cp as a function of a frequency parameter defined as fd are shown
in Fig. 2, while Fig. 3 presents changes in the group velocity cg as a function of the same frequency parameter fd. The values
of the group velocity cg ¼ do=dk were also obtained numerically by differentiation of the wave number curves k¼ kðoÞ
with respect to the angular frequency o.

As it can be seen from Fig. 4 the phase velocity curve cp ¼ cpðfdÞ for the second propagation mode exhibits some very
unusual behaviour just above the cut-off frequency for this mode and between points A, B and C. It can be seen that the
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A. Żak, M. Krawczuk / Journal of Sound and Vibration 329 (2010) 2099–2113 2105
opposite signs of the phase cp and the group cg velocities between points A and B suggests a possibility that the direction of
energy transmission in the rod can be opposite to the direction of wave motion. Such a phenomenon of the so-called
backward wave propagation was studied and reported in the literature in the past by many researches [57–60] and still is a
subject of research especially in the case of electromagnetic waves.

In the range of the frequency parameter fd starting from the cut-off frequency of 3:72 MHz mm (point B) up to
3:85 MHz mm (points A and C) the phase velocity curve cp is double valued, which indicates two different zones for the
values of the group velocity cg . The first branch of the phase velocity curve cp ¼ cpðfdÞ between point A and B is a high phase
velocity region, where the phase velocity cp and the group velocity cg have opposite signs. The second branch between
points B and C is a low phase velocity region, where the phase velocity cp and the group velocity cg have the same signs.

3. Rod theories

3.1. General considerations

The rod theories that are widely exploited in the literature and related to propagation of elastic waves in rod structural
elements can be classified and grouped as one-mode, two-mode, three-mode and higher mode theories. A number of
theories based on different displacement fields can be obtained based on the careful analysis of a general three-
dimensional displacement field of a rod structural element. Appropriate Maclaurin series expansion helps to reduce the
number of unknown variables to a desired and necessary number. It should be emphasised that the reduced number of the
unknown variables simplifies not only the complexity of the displacement fields but also reduces the number of wave
modes than are allowed by the theories limiting their application range.

Using the same cylindrical coordinates ðx; r; yÞ expansion into a Maclaurin series, for example, of the component ux of
the rod displacement field about r¼ 0 leads to the following equation:

uxðx; r; yÞ ¼ uxðx;0; yÞþ
X1
n ¼ 1

qnuxðx;0; yÞ
qrn

rn

n!
(18)

It should be mentioned here in the case the component ux the terms that are proportional to the odd values of n are related
with antisymmetric behaviour and propagation of bending waves, while the terms proportional to the even values of n are
related to symmetric behaviour and propagation of longitudinal waves. The same expansion into a Maclaurin series
repeated for the component ur leads to opposite conclusions [5,47,48].

A number of terms kept in the series given by (18) depends on the investigated phenomena and is directly related with
the total number of degrees of freedom of any finite element approximation based on the series expansion. The expansion
of the component ux at n¼ 2 gives the Maclaurin series of the following form:

uxðx; r; yÞ ¼ uxðx;0; yÞþ
quxðx;0; yÞ

qr
rþ

1

2

q2uxðx;0; yÞ
qr2

: r2þEðr3Þ (19)

where Eðr3Þ represents the truncation error of the expansion proportional to r3. At this point a step towards a finite element
approximation can be made and then Eq. (19) can be rewritten as

uxðx; r;yÞ ¼ ~uxðx; yÞþ ~f0ðx; yÞrþ ~f1ðx; yÞr
2 (20)

where now ~uxðx; yÞ, ~f0ðx; yÞ and ~f1ðx; yÞ may be thought of as denoting degrees of freedom of a rod finite element
associated with a Maclaurin expansion of the component ux of the rod displacement field.

It is obvious that due to the truncation of the series (19) the obtained formula (20) is not exact and it represents the
three-dimensional displacement field of a rod structural element in an approximated sense. However, it should be
emphasised that effective solutions of most of the engineering problems involving static or dynamic problems require
finite elements that employ only the first two or three terms of an appropriate Maclaurin series. In the case considered
above it can be noted immediately that

~uxðx; yÞ ¼ uxðx;0;yÞ

~f0ðx; yÞ ¼
quxðx;0; yÞ

qr

~f1ðx; yÞ ¼
1

2

q2uxðx;0;yÞ
qr2

(21)

Contrary, a great majority of problems involving propagation of elastic waves in one or two-dimensional structural
elements require much more accurate representation of the three-dimensional behaviour of a solid element. This is
directly related with modelling of different modes of elastic waves propagating within such three-dimensional solid
structures.

The wave propagation phenomena is related with a coupled interaction of shear and extensional waves propagating
within a structure with structural lateral boundaries. As a result of this coupled interaction propagation of various modes
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of elastic waves can be observed. Appropriate representation of these modes in a broad range of wave propagation
frequencies requires a greater number of terms of a Maclaurin series in order to capture the complexity of the interaction
phenomena. For that reason special types of new finite elements are developed that are known in the literature as spectral

finite elements.

3.2. Displacement fields

As mentioned before propagation of elastic longitudinal waves in rod structural elements is associated with rod
symmetric behaviour. Therefore based on Eq. (18) and the following considerations the general form of the displacement
field of a one-dimensional rod spectral finite element for analysis of propagation of elastic longitudinal waves can be
written in the following way:

uxðx; rÞ ¼ ~uxðxÞþ ~f2ðxÞr
2þ ~f4ðxÞr

4

urðx; rÞ ¼ ~c1ðxÞrþ
~c3ðxÞr

3þ ~c5ðxÞr
5 (22)

where only six terms of the Maclaurin series expansions of the displacement components ux and ur are used. It can be
reminded here that due to the rotational symmetry of the rod with respect to its longitudinal x all displacement and strain
components must be independent of the angle y.

The function ~uxðxÞ as well as the functions ~f iðxÞ (i¼ 2;4) and ~cjðxÞ (j¼ 1;3;5) defined in Eqs. (22) represent the
independent nodal variables or degrees of freedom of the rod spectral finite element. It can be seen that in the current
formulation the rod element has as many as 6 degrees of freedom in a single node. This number of independent nodal
variables may be reduced, however, by taking into account the zero traction condition (16) rewritten here:

srrðx; rÞ ¼ txrðx; rÞ ¼ 0 for 0rxr l; r¼ a¼
d

2
(23)

where now l denotes the length and d is the diameter of the rod spectral finite element—see Fig. 1.
Based on the form of the displacement field given by Eqs. (22) the displacement fields for various one-mode, two-mode

and other multimode rod theories can be built. Additionally the use of Eqs. (23) representing the zero traction conditions
on the lateral boundaries of the rod element allows one to enrich the displacement fields by some additional higher order
terms. However, in most cases the resulting set of two differential equations is very complicated and cannot be solved
analytically.

This problem can be avoided by a simple mathematical substitution thanks to which the zeroth-order terms for both
displacement components ux and ur can be represented as sums of all order terms. In the current case this condition takes
the following form—for clarity and simplicity of the presentation the arguments x, r will be omitted hereinafter:

ux ¼ ~ux�f2�f4; f2 ¼�
~f2a2; f4 ¼�

~f4a4

c1 ¼
~c1�c3�c5; c3 ¼�

~f3a2; c5 ¼�
~c5a4 (24)

Taking into account Eqs. (24) a new form of the displacement field of a one-dimensional rod spectral finite element for
analysis of propagation of elastic longitudinal waves can be expressed as:

ux ¼ uxþf2 1�
r

a

� �2
� �

þf4 1�
r

a

� �4
� �

ur ¼c1rþc3 1�
r

a

� �2
� �

rþc5 1�
r

a

� �4
� �

r (25)

Particular theories of rod symmetric behaviour known from the literature can be easily obtained based on Eqs. (23) and
(25). Different rod theories can be associated with different forms of the functions fi (i¼ 2;4) and cj (j¼ 1;3;5). It is very
convenient to present them in the following manner:
�
 elementary single-mode theory:

f2 ¼f4 ¼c1 ¼c3 ¼c5 ¼ 0 (26)

single-mode Love theory [51]:
�
f2 ¼f4 ¼c1 ¼c3 ¼c5 ¼ 0 (27)

with an additional equation resulting from the assumption about the coupling between the longitudinal velocity _ux and
the transverse velocity _ur through Poisson’s ratio effect _err ¼�n_exx influencing rod kinetic energy:

_ur ¼�nr
d _ux

dx
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two-mode Mindlin–Herrmann theory [61]:
�
f2 ¼f4 ¼c3 ¼c5 ¼ 0 (28)

higher order two-mode theory (authors):
�
f2 ¼
a2

2

dc1

dx
; c3 ¼

mþl
2mþl

c1þ
l

2ð2mþlÞ
dux

dx

f4 ¼c5 ¼ 0 (29)

three-mode theory [5]:
�
f4 ¼c3 ¼c5 ¼ 0 (30)

higher order three-mode theory (authors):
�
f4 ¼
a2

4

dc1

dx
�

1

2
f2

� �
; c3 ¼

mþl
2mþl

c1þ
l

2ð2mþlÞ
dux

dx

c5 ¼ 0 (31)

four-mode theory [42]:
�
f4 ¼c5 ¼ 0 (32)

higher order four-mode theory (authors):
�
f4 ¼
a2

4

dc1

dx
�

1

2
f2

� �

c5 ¼
mþl

2ð2mþlÞ
c1�

1

2
c3þ

l
4ð2mþlÞ

dux

dx
(33)

It should be stressed out that the physical meaning of the higher order terms fi (i¼ 2;4) and cj (j¼ 3;5) must always be
connected together with the form of a particular displacement field under consideration and results from certain
mathematical manipulations that influence it. In the current approach these terms express higher order corrections to the
initially assumed distributions of the longitudinal and transverse displacement components.
3.3. Dispersion curves

Dispersion curves for a particular rod theory carry very important information about certain frequency characteristics
of the theory, but most of all the range of its application and agreement with the Pochhammer analytical solution. In the
case of the displacement fields presented in the previous section and associated with the different rod theories the
dispersion curves can be evaluated based on a very simple procedure.

In a first step it is necessary to determine equations of motion associated with the rod theory under consideration and
this can be easily achieved by the use of Hamilton’s principle. Based on the given displacement field the virtual work W

related to deformation and motion of a rod structural element may be expressed in terms of its strain energy U, kinetic
energy T as well as the work of some external forces F. Application of Hamilton’s principle at this point leads to a set of
equations of motion that are derived for each component of the displacement field, as presented by Doyle in [5].

In the following step propagation of harmonic waves within a rod structural element is assumed. This helps to
transform the equations of motion from a set of partial differential equations, defined in the time domain for each
displacement component, to a set of linear homogeneous equations defined in the frequency domain but for the
amplitudes of each displacement component. This system can be solved only then when its determinant vanishes, which
leads directly to a characteristic polynomial equation. The roots of the characteristic polynomial equation define dispersion
relations between particular modes of harmonic waves that can propagate within the rod, the wave number k and the
angular frequency o of these waves.

The dispersion curves for each rod theory discussed in this paper were obtained by the use of the Mathematica package
[62] that was applied for all required analytical manipulations, while for necessary numerical calculations related with
evaluation of the dispersion curves the authors employed the Matlab package [55].

The above-mentioned procedure is discussed here in more details for the two-mode Mindlin–Herrmann theory of rod
behaviour from the previous section of the paper. In the case of the two-mode Mindlin–Herrmann theory taking into
account Eqs. (25) as well as the relations given by Eqs. (28) leads to the displacement field in the following simple form:

ux ¼ ux

ur ¼c1r (34)
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for which the strain energy U and the kinetic energy T can be evaluated from

T ¼
1

2

ZZZ
V
r ~T dV ; U ¼

1

2

ZZZ
V

~U dV (35)

where r is the rod material density and V denotes the volume of the rod:

~T ¼
qux

qt

� �2

þr2 qc1

qt

� �2

~U ¼ ðlþ2mÞ qux

qx

� �2

þr2 qc1

qx

� �2

þ4l
qux

qx
c1þ4ðlþmÞc2

1 (36)

The application of Hamilton’s principle and integration by parts of Eqs. (35) leads to equations of motion associated
with the two-mode Mindlin–Herrman theory of rod behaviour. These equations can be written as a set of two following
partial differential equations:

r q2ux

qt2
¼ ðlþ2mÞq

2ux

qx2
þ2l

qc1

qx

a2rq
2c1

qt2
¼ a2mq

2c1

qx2
�4l

qux

qx
�8ðlþmÞc1 (37)

Eqs. (37) describe motion of rod structural elements according to the two-mode Mindlin–Herrmann theory and couple
spacial changes in the displacement components ux and c1 with changes in time t. However, in order to obtain the
dispersion curves, which express changes in the phase cp and group cg velocities as a function of the angular frequency o or
the frequency f ¼o=2p, for the two modes of elastic longitudinal waves associated with the Mindlin–Herrmann theory of
rods, the equations of motion (37) must be transformed from the time domain into the frequency domain. For that purpose
it is convenient to assume that the displacement components ux and c1 can be expressed as solutions of the equations of
motion:

ux ¼/uxSexp½�iðkx�otÞ�

c1 ¼/c1Sexp½�iðkx�otÞ� (38)

where i¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit and o and k denote the angular frequency and the wave number, respectively.
A system of two linear homogeneous equations can be obtained for each harmonic amplitude component /uxS and

/c1S by simple substitution of Eq. (38) into Eq. (37) and some simplifications:

fro2�k2ðlþ2mÞg/uxS�f2likg/c1S¼ 0

f4l ikg/uxS�f8lþð8þa2k2Þm�a2ro2g/c1S¼ 0 (39)

This system has a non-trivial solution only then when its determinant vanishes, which leads to a characteristic
polynomial equation associated with the current problem:

mðlþ2mÞa2k4þða2ro2�8ðlþmÞÞro2þð8mð3lþ2mÞ�ðlþ3mÞa2ro2Þk2 ¼ 0 (40)

being the fourth-order polynomial equation with respect to the wave number k and being a function of the angular
frequency o. This characteristic polynomial equation has two real and positive roots that are related with the two modes
of elastic longitudinal waves that can propagate within a rod structural element and allowed by the two-mode Mindlin–
Herrmann theory. These roots can be calculated numerically for any chosen value of the angular frequency o and thanks to
the obtained relation k¼ kðoÞ the phase velocity cp ¼o=k as well as the group velocity cg ¼ do=dk can be easily calculated
and plotted, as presented in Fig. 7.

Exactly the same procedure was used in order to calculate the remaining dispersion curves associated with the other
rod theories presented and discussed in the previous section of the paper.

3.4. Comparison of rod theories

It can be expected that various rod theories known from the literature and employed to study propagation of elastic
longitudinal waves in rod structural elements agree with the Pochhammer analytical solution within a limited frequency
range. Depending on the rod theory this frequency range is different and may cover propagation of one, two or even more
wave modes. For the rod theories discussed in the previous section of this paper this is very well seen in Figs. 5–12, which
present dispersion curves for the ratio of the group velocity cg to the phase velocity cp.

It is very well seen from Figs. 5 to 12 that the agreement between the Pochhammer analytical solution and particular
rod theories increases with the number of additional higher modes used by the theories. It should be mentioned that for
the four-mode theories the dispersion curve for the fourth wave mode is not observable and lies beyond the investigated
frequency range.
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Fig. 5. Dispersion curve for the velocity ratio cg=cp for the elementary single-mode theory of rods (cl ¼ 6:3 km=s, ct ¼ 3:2 km=s).
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Fig. 6. Dispersion curve for the velocity ratio cg=cp for the single-mode Love theory of rods (cl ¼ 6:3 km=s, ct ¼ 3:2 km=s).
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Fig. 7. Dispersion curve for the velocity ratio cg=cp for the two-mode Mindlin–Herrmann theory of rods (cl ¼ 6:3 km=s, ct ¼ 3:2 km=s).
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Fig. 8. Dispersion curve for the velocity ratio cg=cp for the higher order two-mode theory of rods (cl ¼ 6:3 km=s, ct ¼ 3:2 km=s).
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Fig. 9. Dispersion curve for the velocity ratio cg=cp for the three-mode theory of rods (cl ¼ 6:3 km=s, ct ¼ 3:2 km=s).
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Fig. 10. Dispersion curve for the velocity ratio cg=cp for the higher order three-mode theory of rods (cl ¼ 6:3 km=s, ct ¼ 3:2 km=s).
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Fig. 11. Dispersion curve for the velocity ratio cg=cp for the four-mode theory of rods (cl ¼ 6:3 km=s, ct ¼ 3:2 km=s).
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Fig. 12. Dispersion curve for the velocity ratio cg=cp for the higher order four-mode theory of rods (cl ¼ 6:3 km=s, ct ¼ 3:2 km=s).
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It is interesting to note that the additional modes have the greatest influence on the behaviour of the dispersion curves
related with propagation of the fundamental wave mode and within the frequency range up to the first cut-off frequency. It
can be explained by the fact that the behaviour of the fundamental mode within this frequency range is described by all
degrees of freedom used by different rod theories, while above it the same number of degrees of freedom is available to
describe the behaviour of not only the fundamental but also all higher wave modes.

It should be noticed that for all higher order rod theories investigated (Love in Fig. 6, two-mode in Fig. 8, three-mode in
Fig. 10, four-mode in Fig. 12) the agreement between the dispersion curves from the Pochhammer analytical solution and
the dispersion curves obtained from the rod theories is much better than in the case of ordinary higher-mode theories
(elementary in Fig. 5, two-mode Mindlin–Herrmann in Fig. 7, three-mode in Fig. 9 and four-mode in Fig. 11).

The applicability of the higher order three and four-mode rod theories extends also to the frequency range that covers
the first and the second cut-off frequency, respectively. The reason for that becomes obvious if one refers back to the zero-
traction boundary conditions expressed by Eqs. (8). The fulfilment of these conditions allows one to enrich the
displacement fields of higher order theories by two higher order terms making the obtained solution closer to the
Pochhammer analytical solution. These higher order terms may be thought of as being equivalent to two additional but
dependent degrees of freedom. However, the zero-traction boundary conditions are not fulfilled for ordinary higher-mode
theories, although the theories make use of similar higher order terms in their displacement fields. The influence of the
higher order terms is especially well illustrated in the case of the higher order two-mode theory presented in Fig. 8 and the
three and four-mode theories presented in Fig. 9 and Fig. 11 in the frequency range up to the first cut-off frequency.

It should be understood that the usefulness of a particular rod theory to study various wave propagation problems in
rod structural elements depends most of all on the frequency range of interest. For that reason even the lower-mode
theories (elementary or Love) can be successfully applied in all such cases, where the bandwidth of excitation is narrow
and the excitation frequencies are low. At the same time the higher-mode theories or higher order theories can be used for
much wider bandwidths of high frequency excitations. It can be noticed from Figs. 5 to 12, however, that even higher order
and higher-mode theories discussed in this paper are applicable for the excitation frequencies slightly above the first cut-
off frequency. For the higher order four-mode theory this frequency range covers also the second cut-off frequency and in
the case of the aluminium rod under investigation can be estimated as 5:0 MHz mm.

Changes in the relative error d are illustrated in Fig. 13 as a function of the frequency parameter fd for each rod theory
discussed in the paper calculated against the Pochhammer analytical solution for the fundamental propagation mode. This
relative error was evaluated based on the appropriate ratios of the group velocity cg and the phase velocity cp as

d¼
c1

c2
�1

� �
� 100% (41)

where c1 denotes the velocity ratio cg=cp obtained by the use of a selected rod theory, while c2 refers to the velocity ratio
cg=cp obtained from the Pochhammer analytical solution.

According to the results presented in Fig. 13 it can be found out that in the case of the aluminium rod under
consideration the elementary and Love theories of rod behaviour can be practically used up to 1:4 and 1:9 MHz mm,
respectively. This bandwidth for applications of the theories ensures that the relative error d, between the results based on
the theories and the Pochhammer analytical solution stays below 5 percent. In a similar manner it can be found out that for
the two-mode Mindlin–Herrmann theory, the higher order two-mode and the three-mode theories the appropriate values
of the frequency parameters are 1:7, 3:5 and 2:0 MHz mm. It is worth to point out that the relative error d for these rod
theories increases greatly with an increase in the frequency parameter fd and has its maximum value at the first cut-off
frequency denoted as point B in Fig. 13. After this point the relative error d decreases.

For the four-mode as well as higher order three and four-mode rod theories the relative error d never reaches the value
of 5 percent within the frequency range assumed. The greatest relative error d equal to 4 percent is associated with the use
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of the four-mode theory, while in the case of the higher order three and four-mode theories the values of the relative error
d are around 3 percent and 0.1 percent, respectively.

In general, it can be said that within the investigated frequency range all higher order theories give better results than
equivalent ordinary theories, therefore in order to ensure low levels of modelling errors it should be recommended to
employ rather higher order lower-mode theories of rod behaviour than ordinary higher-mode theories.

4. Conclusions

This paper presents results of analytical and numerical investigation and comparison of different theories that are
widely used in spectral finite element modelling of rod behaviour associated with propagation of symmetric longitudinal
waves. This analysis comprised various single, two-mode and three-mode theories including the elementary, classical Love
and Mindlin–Herrmann approaches known from the literature as well as new two, three and four-mode theories proposed
by the authors. Appropriate dispersion curves associated with each theory, obtained by the use of Hamilton’s principle,
have been presented and discussed in the paper.

As expected the investigated rod theories employed to study propagation of elastic longitudinal waves in rod structural
elements show a good agreement with the Pochhammer analytical solution within different and limited frequency ranges.
Depending on the theory this frequency range varies and may cover propagation of one, two or even more wave modes.
The investigation programme carried out by the authors showed major differences and similarities between the theories
and great attention has been paid on properties, limitations as well as difficulties associated with the use of the theories.
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[38] W. Ostachowicz, M. Krawczuk, A. Żak, P. Kudela, Damage detection in elements of structures by the elastic wave propagation method, Computer

Assisted Mechanics and Engineering Sciences 13 (2006) 109–124.
[39] P. Kudela, W. Ostachowicz, Wave propagation modelling in composite plates, Applied Mechanics and Materials 9 (2008) 89–104.
[40] A. Baz, Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping, Smart Materials

and Structures 9 (2000) 372–377.
[41] M. Palacz, M. Krawczuk, Analysis of longitudinal wave propagation in a cracked rod by the spectral element method, Computers and Structures 80

(2002) 1809–1816.
[42] S.P. Anderson, Higher-order rod approximations for the propagation of longitudinal stress waves in elastic bars, Journal of Sound and Vibration 290

(2006) 290–308.
[43] S.R. Bodner, J. Aboudi, Stress wave propagation in rods of elastic–viscoplastic material, International Journal of Solids and Structures 19 (1983)

305–314.
[44] W. Seemann, Transmission and reflection coefficients for longitudinal waves obtained by a combination of refined rod theory and FEM, Journal of

Sound and Vibration 198 (1996) 571–587.
[45] J. Zheng, P. Xu, Q. Fu, R.P. Taleyarkhan, S.H. Kim, Elastic stress waves of cylindrical rods subjected to rapid energy deposition, Proceedings of the

Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 218 (2004) 359–368.
[46] P. Kudela, M. Krawczuk, W. Ostachowicz, Wave propagation modelling in 1D structures using spectral finite elements, Journal of Sound and Vibration

300 (2007) 88–100.
[47] J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Publishing Company, Amsterdam, 1973.
[48] J.L. Rose, Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, 1999.
[49] L. Pochhammer, Biegung des Kreiscylinders–Fortpflanzungs-Geschwindigkeit kleiner Schwingungen in einem Kreiscylinder, Journal für die Reine und

Angewandte Mathematik 81 (1876) 33–61.
[50] C. Chree, The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications, Proceedings of the Cambridge

Philosophical Society Mathematical and Physical Sciences 14 (1889) 250–369.
[51] A.E. Love, A Treatise on the Mathematical Theory of Elasticity, fourth ed., Dover Publications, New York, 1927.
[52] R.M. Davis, A critical study of the Hopkinson pressure bar, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical

Sciences 240 (1948) 375–457.
[53] Y.H. Pao, R.D. Mindlin, Dispersion of flexural waves in an elastic, circular cylinder, Journal of Applied Mechanics 27 (1960) 513–520.
[54] K.F. Graff, Wave Motion in Elastic Solids, Dover Publications, New York, 1991.
[55] URL: /http://www.mathworks.comS.
[56] A. Ralston, A First Course in Numerical Analysis, McGraw-Hill Book Company, New York, 1965.
[57] T.R. Meeker, A.H. Meitzler, Guided wave propagation in elongated cylinders and plates, Physical Acoustics, Vol. 1, Part A, Academic Press, New York,

1964 (Chapter 2).
[58] A.H. Meitzler, Backward wave transmission of stress pulses in elastic cylinders and plates, The Journal of Acoustical Society of America 38 (1965)

835–842.
[59] A. Alippi, A. Bettucci, M. Germano, Anomalous propagation characteristics of evanescent waves, Ultrasonics 38 (2000) 817–820.
[60] P.L. Marston, Negative group velocity Lamb waves on plates and applications to the scattering of sound by shells, The Journal of the Acoustical Society

of America 113 (2003) 2659–2662.
[61] R.D. Mindlin, G. Herrmann, A one-dimensional theory of compressional waves in an elastic rod, Proceedings of the First U.S. National Congress of

Applied Mechanics-1951, 1952, pp. 187–191.
[62] URL: /http://www.wolfram.com/S.

http://www.mathworks.com
http://www.wolfram.com/

	Assessment of rod behaviour theories used in spectral finite element modelling
	Introduction
	Elastic waves in rods
	Theoretical background
	Pochhammer frequency equation
	Solution of the Pochhammer frequency equation

	Rod theories
	General considerations
	Displacement fields
	Dispersion curves
	Comparison of rod theories

	Conclusions
	References




